Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of displacement cross section for proton in the kinetic energy range from 0.4 GeV to 3 GeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

JPS Conference Proceedings (Internet), 33, p.011050_1 - 011050_6, 2021/03

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and aluminum and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.

Journal Articles

Measurement of displacement cross section of structural materials utilized in the proton accelerator facilities with the kinematic energy above 400 MeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

EPJ Web of Conferences, 239, p.06006_1 - 06006_4, 2020/09

 Times Cited Count:0 Percentile:0.1(Nuclear Science & Technology)

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.

Journal Articles

Measurement of displacement cross section of structural materials utilized in the proton accelerator facilities with the kinematic energy above 400 MeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

JPS Conference Proceedings (Internet), 28, p.061004_1 - 061004_6, 2020/02

no abstracts in English

Journal Articles

Measurement of displacement cross-section for structural materials in High-Power Proton Accelerator Facility

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Iwamoto, Hiroki; Hasegawa, Shoichi; Maekawa, Fujio; Yoshida, Makoto*; Ishida, Taku*; Makimura, Shunsuke*; Nakamoto, Tatsushi*

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.499 - 501, 2018/06

no abstracts in English

Journal Articles

Improving atomic displacement and replacement calculations with physically realistic damage models

Nordlund, K.*; Zinkle, S. J.*; Sand, A. E.*; Granberg, F.*; Averback, R. S.*; Stoller, R.*; Suzudo, Tomoaki; Malerba, L.*; Banhart, F.*; Weber, W. J.*; et al.

Nature Communications (Internet), 9, p.1084_1 - 1084_8, 2018/03

 Times Cited Count:229 Percentile:98.89(Multidisciplinary Sciences)

Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only $$sim$$1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators.

Journal Articles

Post irradiation mechanical properties of type 304 stainless steel

Tsuji, Hirokazu; ; Miwa, Yukio; Itabashi, Yukio; *; Shimakawa, Satoshi; Mimura, Hideaki; ; ; Tsukada, Takashi; et al.

Advances in Science and Technology, 24, p.483 - 490, 1999/00

no abstracts in English

Oral presentation

Measurement of DPA cross-section of 0.4 - 3 GeV proton at J-PARC

Matsuda, Hiroki; Meigo, Shinichiro; Maekawa, Fujio; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Makimura, Shunsuke*; Nakamoto, Tatsushi*; Ishida, Taku*

no journal, , 

For a damage evaluation of targets and beam window for a high-intensity proton accelerator facility, DPA based on a model calculation of a cross section of displacement per atom (DPA). However, the models are not sufficiently validated since there are almost no data induced by protons above 20 MeV. Thus, we measure DPA cross section for various measurement at J-PARC by using 0.4-3.0 GeV protons. DPA cross section can be obtained by dividing a resistivity increase after proton irradiation by the resistivity per Frenkel pairs. In this measurement, the sample were placed onto a front edge of a two-stage 4K GM cryocooler (Sumitomo Heavy Industries, Ltd.). In this measurement, an copper wire (diameter 0.25 mm) that was annealed by 800$$^{circ}$$C was employed. The experiment is performed with low-intensity beam at 3NBT line where the proton beam is transported from 3 GeV Synchrotron (RCS) to the Material and Life science Facility (MLF). We started vacuum pumping after an installation and we confirmed that the pressure level achieved the one where the beam can be transported. The achieved temperatures were 4 K around the front edge of the cryocooler and 20 K around the sample due to radiation heat. In this talk, we report a current status of experiment and discuss an effect of a beam profile to the DPA cross section.

Oral presentation

Measurement displacement cross-section of copper for 3-GeV protons

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Iwamoto, Hiroki; Hasegawa, Shoichi; Maekawa, Fujio; Yoshida, Makoto*; Ishida, Taku*; Makimura, Shunsuke*; Nakamoto, Tatsushi*

no journal, , 

At the 3 GeV proton synchrotron accelerator facility in J-PARC Center, a displacement cross-section of copper with 3 GeV protons was measured. As a result, it was the first time in the world that we could obtain the displacement cross-section of 3 GeV protons. Calculations by the NRT model commonly used for Displacement per Atom (DPA) evaluations, the NRT model was found to overestimate the experiment approximately 3 times. A new model, which is recently developed by Nordlund et al, was shown to reproduce the experiment well.

Oral presentation

Measurement displacement cross section of copper and aluminum for protons in the kinematic region between 0.4 and 3 GeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Iwamoto, Hiroki; Hasegawa, Shoichi; Maekawa, Fujio; Yoshida, Makoto*; Ishida, Taku*; Makimura, Shunsuke*; Nakamoto, Tatsushi*

no journal, , 

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and copper and aluminum were used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimates the experiment by about 3 times.

Oral presentation

Measurement of Fe displacement cross section for proton energy region between 0.4 and 3 GeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Iwamoto, Hiroki; Hasegawa, Shoichi; Maekawa, Fujio; Yoshida, Makoto*; Ishida, Taku*; Makimura, Shunsuke*; Nakamoto, Tatsushi*

no journal, , 

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and an iron was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimates the experiment by about 3 times.

Oral presentation

Measurement of displacement cross section in J-PARC for proton kinetic energy range from 0.4 GeV to 30 GeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Iwamoto, Hiroki; Hasegawa, Shoichi; Maekawa, Fujio; Yoshida, Makoto*; Ishida, Taku*; Makimura, Shunsuke*; Nakamoto, Tatsushi*

no journal, , 

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We have started to measure the displacement cross section for the protons in the energy region between 0.4 to 30 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on the cryo-cooled sample to maintain damage. Experiments were conducted at the J-PARC Center, and Al and Cu were used as samples. As a result of a comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.

Oral presentation

Measurement of displacement cross section on tungsten for 0.4 - 3 GeV proton projectile

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Iwamoto, Hiroki; Hasegawa, Shoichi; Maekawa, Fujio; Yoshida, Makoto*; Ishida, Taku*; Makimura, Shunsuke*; Nakamoto, Tatsushi*

no journal, , 

R&D of the structural material such as a beam window, which serves as a partition between the accelerator and the target region, is crucial in the ADS. Although the displacement per atom (DPA) is widely used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV for proton projectile. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on the cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and a tungsten wire sample was applied. It was found that the calculation of the NRT model, which is a widely utilized to calculate DPA, predicted the cross section by about 3 times of the present experiment.

12 (Records 1-12 displayed on this page)
  • 1